7.1 Vectors in 2 Dimensions

Question Paper

Course	CIEALevelMaths
Section	7. Vectors
Торіс	7.1 Vectors in 2 Dimensions
Difficulty	Very Hard

Time allowed:	70
Score:	/52
Percentage:	/100

Question la

A, *B* and *C* are the three vertices of a triangle. $\overrightarrow{AC} = 5\mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{BC} = -3\mathbf{i} + k\mathbf{j}$, where *k* is a constant.

(a) Find \overrightarrow{AB} in terms of **i**, **j** and k.

[2 marks]

Question 1b

(b) Given that $|\overrightarrow{AB}| = \sqrt{89}$, find the two possible values of k.

[3 marks]

Question 2a

(a)
$$\mathbf{a} = \binom{8}{m}, \ \mathbf{b} = \binom{n}{-2}, \ \mathbf{c} = \binom{m}{n}$$

Given that $\mathbf{a} + \mathbf{b} = \mathbf{c} - 2\mathbf{b}$, find the values of *m* and *n*.

[3 marks]

Question 2b

(b)
$$\mathbf{d} = \binom{2k+1}{2k-1}$$

Given that $|\mathbf{d}| = 3k\sqrt{2}$, find two possible values for *k*. Give your answer as an exact value.

[2 marks]

Question 3a

The point *A* lies on the circle with equation $(x - 11)^2 + (y - 7)^2 = 34$. *A* has position vector $\overrightarrow{OA} = 3k\mathbf{i} + 5k\mathbf{j}$, where *k* is a constant.

(a) Find the value of *k*, and hence determine the coordinates of *A*.

[4 marks]

Question 3b

(b) Explain why a line passing through *O* and *A* must be a tangent to the circle.

[2 marks]

Question 4

Points *A*, *B* and *C* have position vectors $\overrightarrow{OA} = -6\mathbf{i} - 2\mathbf{j}$, $\overrightarrow{OB} = \mathbf{i} + m\mathbf{j}$ and $\overrightarrow{OC} = 3\mathbf{i} - 8\mathbf{j}$, respectively.

Given that *A*, *B* and *C* lie on the same straight line, use a vector method to find the value of *m*.

[5 marks]

Question 5a

Vector \overrightarrow{AB} has a magnitude of $2\sqrt{6}$ and makes an angle of 165° with the positive y-axis (measuring anticlockwise from the positive y-axis).

(a) Find \overrightarrow{AB} in the form $a\mathbf{i} + b\mathbf{j}$, where both a and b are given as exact values.

[3 marks]

Question 5b

(b) Find a unit vector in the direction of \overrightarrow{AB} .

[2 marks]

Question 6a

A ship is searching for a radio buoy whose transmitter has ceased functioning. The ship sets out from point O and heads in the approximate direction of the buoy, travelling at a constant speed of 40 km/h in a direction parallel to the vector $\mathbf{i} + 3\mathbf{j}$. After travelling for ninety minutes the ship has reached point P. At that time, the ship receives a brief transmission from the buoy indicating that the buoy is at a bearing of 210° from the ship. The ship heads on that bearing at the same constant speed, and reaches the buoy at point Q in another 45 minutes. Given that vector $\overrightarrow{OQ} = x\mathbf{i} + y\mathbf{j}$ km, find the exact values of x and y.

(a) Given that vector $\overrightarrow{OQ} = x\mathbf{i} + y\mathbf{j}$ km, find the exact values of x and y.

[7 marks]

Question 6b

(b) How far was the buoy from the ship, and at what bearing, at the time the ship initially left point *O*? Give the distance in kilometers, and give your answers correct to 1 decimal place.

[3 marks]

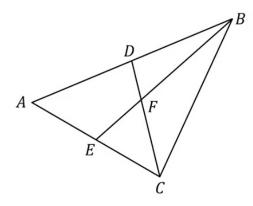
Question 7a

In an experiment, three forces are acting on a particle. $\mathbf{F}_1 = 7\mathbf{i} - \mathbf{j}$ newtons and $\mathbf{F}_2 = x\mathbf{i} + y\mathbf{j}$ newtons are both constant forces, although the values of x and y are initially unknown. The third force is $\mathbf{F}_3 = k\mathbf{i} + k\sqrt{3}\mathbf{j}$ newtons, where $k \ge 0$ is a parameter that can be varied by the experimenters. The resultant force \mathbf{R} acting on the particle is given by $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$.

(a) Given that $\mathbf{R} = \mathbf{0}$ when the magnitude of \mathbf{F}_3 is 10 newtons, find the exact values of x and y.

[4 marks]

Question 7b


(b) Find the magnitude of \mathbf{F}_2 and the angle it makes with the vector \mathbf{i} . Give your answers correct to 1 decimal place.

[3 marks]

www.mikedemy.com

Question 8a

In triangle *ABC*, *D* is the midpoint of *AB* and *E* is the midpoint of *AC*. *BE* and *CD* intersect at point *F*.

(a) Given that $\overrightarrow{AB} = 2\mathbf{a}$ and $\overrightarrow{AC} = 2\mathbf{b}$, write the vectors \overrightarrow{BC} , \overrightarrow{BE} and \overrightarrow{CD} in terms of \mathbf{a} and \mathbf{b} .

[3 marks]

Question 8b

(b) By setting up and solving a suitable vector equations, prove that each of *BE* and *CD* divides the other in the ratio 1:2

[6 marks]

www.mikedemy.com